skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "George, Sarabeth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Members of the order Isochrysidales are unique among haptophyte lineages in being the exclusive producers of alkenones, long‐chain ketones that are commonly used for paleotemperature reconstructions. Alkenone‐producing haptophytes are divided into three major groups based largely on molecular ecological data: Group I is found in freshwater lakes, GroupIIcommonly occurs in brackish and coastal marine environments, and GroupIIIconsists of open ocean species. Each group has distinct alkenone distributions; however, only GroupsIIandIIIIsochrysidales currently have cultured representatives. The uncultured Group I Isochrysidales are distinguished geochemically by the presence of tri‐unsaturated alkenone isomers (C37:3bMe, C38:3bEt, C38:3bMe, C39:3bEt) present in water column and sediment samples, yet their genetic diversity, morphology, and environmental controls are largely unknown. Using small‐subunit (SSU) ribosomalRNA(rRNA) marker gene amplicon high‐throughput sequencing of environmental water column and sediment samples, we show that Group I is monophyletic with high phylogenetic diversity and contains a well‐supported clade separating the previously described “EV” clade from the “Greenland” clade. We infer the first partial large‐subunit (LSU)rRNAgene Group I sequence phylogeny, which uncovered additional well‐supported clades embedded within Group I. Relative to GroupII, Group I revealed higher levels of genetic diversity despite conservation of alkenone signatures and a closer evolutionary relationship with GroupIII. In Group I, the presence of the tri‐unsaturated alkenone isomers appears to be conserved, which is not the case for GroupII. This suggests differing environmental influences on Group I andIIand perhaps uncovers evolutionary constraints on alkenone biosynthesis. 
    more » « less